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The stability of a second-order Stokes fluid has only recently begun 
to attract the attention of researchers; it is therefore understandable 
that we have not encountered even one study in this field, In beginning 
our study of this problem we shall use the classification proposed in 
[1] ; for this classification we should distinguish between a second-order 

Stokes fluid and a generalized Reiner-Rivlln fluid since the latter pos- 

sesses a "memory." For the most part, studies concerned with the flow 
stability of such a fluid center around flow along an inclined plane 
[2, 3]. 

xl 
/ / / / / / / / / / / / ~ / / / / / / / / / / / / / / / , ,  

L~ 

" / / / / / / / / / / / / / / / / / / / / / / / / / / / , ,  

Fig. i. Illustrative diagram. 

In this article we shall consider the flow stability of weakly linear 

fluids with respect to long-wave perturbations in a plane channel. 
Figure 1 shows the flow pattern. Without allowing for the external 

volume forces we write the equation of motion as 

/ OUi OUi t --  Ozia 
O [ , , ~ - ~  Ua OX a / - -  OX a " (1) 

We assume the flow is incompressible, isotropic, and satisfies the 

equation of state 

"~ia = fo (1) ?qa + fl ( I)eicr @ [2 (1) eil~el~a, (2) 

where 
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I is the common symbol denoting the three invariants of the tensor 

eia; f0, fl,  and fz are functions of the three invariants specified as 

fo (I) = - - p ,  f l  (1) = I-~ -- ~ol.., f~(1) = ,%. (3) 

In these expressions, p is the pressure and/~, ~z 2, and Pa are the physical 

constants of the fluid. 
Assuming that the unperturbed flow has only one velocity compo- 

nent ~1 directed along the x-axis (Fig. 1) we therefore have I s = 0 and 
I z = --(dgl/dy) z. Then, after some transformations using the method 
of successive approximations we obtain the velocity profile for unper- 

turbed motion 
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where U = p~l/khZ; k = -p ;  M = (~t2/gs)(kh) s is a parameter for fluid 
nonlinearity; below, we shall assume this parameter has intermediate 

values. 
Using the usual method [2] we write the Orr- Sommeffeld equation 

and the boundary conditions for this problem as 
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~D(ii) =cD'(dzl) ~_ O. (6) 

The characteristic values for this problem are specified by Eq. (5) 
and boundary conditions (6). For a nontrivial solution, we must have 

=;~(R, M, ~). 

The equation 

~i(R, M, ~) = 0 (7) 

determines the relationship between R and a for a given value of M. 

Graphically, this relationship is the neutral-stability curve. 
We shall solve this problem by the method of successive approxi- 

mations. 
Assuming a and M are on the order of unity, in the zeroth ap- 

proximation we have 

whose integral is 

where 

.~v + i 3oRr = o, (8) 

~o = A shpy + B chpy -}- Cy + D,  

p~ .= - -  i ~o R. 

(9) 

Allowing only for the even part of r [4] and using the boundary 
conditions to find the constant we can write the characteristic func- 
tions and characteristic values in the zeroth approximation with an 
accuracy to within an arbitrary constant: 

% = ch p y - - c h  p, (10) 

~ o i = - - i - - ,  m = l ,  2, 3 . . . . .  (11) 
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From the last equation it follows that in the zeroth approximation 

motion is stable for any R (since ~i0 < 0). 
Performing similar calculations for the first approximation and 

restricting ourselves to the second approximation we obtain character- 
istic functions and characteristic values in the first and second approx- 
imations. Here we shall only write the increments in the characteristic 
values obtained respectively in the first and second approximations: 
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Adding the imaginary parts of the characteristic values of all ap- 
proximations (1t), (12), and (13) we obtain the following expression 

for the growth coefficient: 
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