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The stability of a second-crder Stokes fluid has only recently begun
to attract the attention of researchers; it is therefore understandable
that we have not encountered even one study in this field, In beginning
our study of this problem we shall use the classification proposed in
[1]; for this classification we should distinguish between a second-order
Stokes fluid and a generalized Reiner-Rivlin fluid since the latter pos-
sesses a "memory.," For the most part, studies concerned with the flow
stability of such a fluid center around flow along an inclined plane
[2,3].
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Fig. 1. Illustrative diagram.

In this article we shall consider the flow stability of weakly linear
fluids with respect to long-wave perturbations in a plane channel.

Figure 1 shows the flow pattern. Without allowing for the external
volume forces we write the equation of motion as
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We assume the flow is incompressible, isotropic, and satisfies the
equation of state
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I is the common symbol denoting the three invariants of the tensor

eig; oo f1o and f, are functions of the three invariants specified as
foth=—p, hHhU)=p—pl, L) =y 3)

In these expressions, p is the pressure and {1, g, and p are the physical

constants of the fluid,

Assuming that the unperturbed flow has only one velocity compo-
nent T; directed along the x-axis (Fig. 1) we therefore have Iy = 0 and
I = —(dy/ dy)2 . Then, after some transformations using the method
of successive approximations we obtain the velocity profile for unper-
turbed motion
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where U= pﬁl/khzg k=~—p; M= (;12/;13)(kh)2 is a parameter for fluid
nonlinearity: below, we shall assume this parameter has intermediate
values.
Using the usual method [2] we write the Orr- Sommerfeld equation
and the boundary conditions for this problem as
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The characteristic values for this problem are specified by Eq. (5)
and boundary conditions (6). For a nontrivial solution, we must have

§=5(R, M, a).
The equation
3R, M, 9)=0 (M

determines the relationship between R and o for a given value of M.
Graphically, this relationship is the neutral-stability curve.

We shall solve this problem by the method of successive approxi-
mations.

Assuming o and M are on the order of unity, in the zeroth ap-
proximation we have

LV + i 3Ry =0, (8)
whose integral is
@y = Ashpy +- B chpy +Cy +- D, )]
where
pt=—i%R.

Allowing only for the even part of & [4] and using the boundary
conditions to find the constant we can write the characteristic func-
tions and characteristic values in the zeroth approximation with an
accuracy to within an arbitrary constant:

®y =chpy —chp, (10)
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From the last equation it follows that in the zeroth approximation
motion is stable for any R (since Bjy < 0).

Performing similar calculations for the first approximation and
restricting ourselves to the second approximation we obtain character-
istic functions and characteristic values in the first and second approx-
imations. Here we shall only write the increments in the characteristic
values obtained respectively in the first and second approximations:
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Adding the imaginary parts of the characteristic values of all ap-

proximations (11), (12), and (13) we obtain the following expression
for the growth coefficient:
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